Chào mừng bạn đến blog Cốc Cốc News Tin Tức Trang Chủ

Table of Content

Video Which test requires strict skin antisepsis procedures before specimen collection ?

Kinh Nghiệm Hướng dẫn Which test requires strict skin antisepsis procedures before specimen collection Mới Nhất

Dương Anh Sơn đang tìm kiếm từ khóa Which test requires strict skin antisepsis procedures before specimen collection được Cập Nhật vào lúc : 2022-12-02 09:55:10 . Với phương châm chia sẻ Bí quyết Hướng dẫn trong nội dung bài viết một cách Chi Tiết Mới Nhất. Nếu sau khi đọc nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.

Introduction

Bloodstream infection (BSI) is a potentially life-threatening condition with a case fatality rate of 30%–40% and increasing incidence and severity [1], [2]. The rapid and accurate diagnosis of bacteremia and fungemia allows prompt administration of targeted antibiotic therapy (within 24–48 h), with positive effects on the clinical outcomes, reducing mortality and costs, and limiting the development of antimicrobial resistance [3].

Nội dung chính Show
    IntroductionTiming and preparation for blood collectionSkin antisepsisBlood volumeSampling method and safetyMedium to be usedTime to BC transportationQuality assurance and quality managementDiscussion and conclusionsAcknowledgmentsWhich specimen requires especially strict identification?Which of the following tests may require special chain of custody documentation when the specimen is collected?Which of the following tests is collected from patients with Fuo to rule out septicemia?What is the most critical aspect of blood specimen collection?

The diagnosis of BSI relies on the detection of pathogens, bacteria or fungi in blood cultures (BCs), still considered as the gold standard to identify pathogens and assess their susceptibility profile. The appropriate collection and quick transportation of BCs strongly influence the diagnostic yield. Moreover, safety during BC sampling needs to be tackled using the correct procedures by engaging specialized and well-trained staff [4], [5], [6].

The aim of this article is to provide a practical guide for physicians and nurses on the optimal execution of BC, as recommended by a board of specialists after in-depth discussion of the available evidence in this field. The document contains practical recommendations on the clinical and technical operational procedures of the entire BC pre-analytical process: (1) timing and preparation for blood collection; (2) skin antisepsis; (3) blood volume; (4) sampling method and staff safety; (5) medium to be used; (6) time to BC transportation; and (7) quality assurance and quality management.

Timing and preparation for blood collection

The most appropriate timing for BC collection is the first aspect that needs to be carefully considered. Unfortunately, only few clinical studies evaluating the timing of BC collection are available. Although all guidelines agree that samples for BC should be collected before antimicrobial treatment, it remains controversial whether they should be drawn or around the time of a fever spike, as physicians often prescribe. In a multicenter retrospective study evaluating the timing of BC collection in relation to temperature increases in patients with BSI, it was found that the likelihood of diagnosing BSI was not significantly enhanced if BC collection was done when patients experienced temperature spikes [7]. Lamy et al. [8] evaluated several studies and concluded that there is no evidence that clearly identifies any optimal timing for BC collection.

Therefore, BC samples should be collected as soon as possible when BSI is suspected and before antibiotic use.

BC sampling must be performed by specialized and well-trained staff with specific expertise in the various phases of the procedure. Ideally, dedicated phlebotomy teams should be created [9] and this may also be cost-effective [10], [11], [12]. However, several organizational and economic limitations, along with cultural habits, hamper their implementation in many countries.

The entire procedure must be carefully standardized and registered. Every health care facility should define and develop core elements and complete a checklist of items related to the pre-analytical steps. Collection of all BC samples must be clearly documented in the patient’s medical records, indicating the date and time of blood collection, skin preparation, sampling site and strategy used [13].

Blood collection should be carefully organized by preparing and checking all devices and materials needed for the draw, including safety butterfly sets and personal protective equipment as needed.

To reduce the risk of BC contamination the time of blood collection, hand hygiene must be carefully performed using a hydroalcoholic preparation, and disposable gloves of the correct size must be worn [14]. Wearing disposable gloves is not an alternative to hand hygiene, which must be carried out again after removing the gloves [15]. The use of sterile gloves is not strictly necessary, although it could be considered depending on the institution’s contamination rate [16]. Even after good hand hygiene and wearing gloves, the vein must not be re-palpated after skin antisepsis and before puncture [17].

As a general rule, peripheral venipuncture is the method of choice for BC collection. A suitable peripheral venous site must be identified before skin antisepsis.

In the absence of a suitable peripheral venous site, an arterial blood site can be considered a valid alternative, because arterial blood has been shown to perform similar to venous blood in terms of contamination and sensitivity [18]. Sampling through pre-existing intravenous catheters, port-a-cath or central venous catheters increases the risk of contamination [18], [19], [20], [21], and the microbiological results have to be interpreted cautiously. However, there are clinical situations in which access to a peripheral vein may be difficult; this may be particularly evident in critically ill and often edematous patients in the intensive care unit (ICU), for whom peripheral phlebotomy is challenging [22], [23], [24].

Although discouraged, this method can be accepted when venous catheter sampling is performed from a freshly placed cannula [17]. One exception is the diagnosis of central line-associated BSI; most current guidelines recommend simultaneous sampling of two BC sets, one collected from the catheter and the other through a, possibly contralateral, venipuncture to be able to estimate the differential time to positive BC or different microbial load [25], [26], [27].

Skin antisepsis

Antisepsis of the skin must be performed rigorously the time of peripheral venous sampling to avoid specimen contamination and consequent alteration of the test results.

A BC contamination rate of 3% is generally considered the maximum acceptable value [28]. The microbiology laboratory of every health care facility should analyze the data on contamination of BCs set time intervals (e.g. every 6 months) and discuss them with the clinical team if necessary.

As indicated by a multidisciplinary team review of best practices for BC collection, skin antisepsis must be performed using 2% chlorhexidine in 70% isopropyl alcohol [21], preferably using disposable devices registered as a medicine. The pre-selected site should be disinfected by scrubbing an area of skin 6–7 cm in diameter for 30 s and then waiting about 30 s for the antiseptic to dry. Cleaning the skin treated with chlorhexidine after blood withdrawal is not necessary.

If the patient is allergic to chlorhexidine, alcoholic povidone-iodine can be used for 120 s [21].

When blood collection through a venous, peripheral or a central catheter is unavoidable, great attention must also be paid to disinfect the connection between the catheter and the drawing set (i.e. the needleless connector or the injection port) using a specific product for the appropriate time: 2% chlorhexidine in 70% isopropyl alcohol for a minimum of 30 s and allowed to dry before using the system [14].

The use of sterile disposable devices seems to have various advantages in terms of standardization, exact dosage, sterility, mechanical action and effectiveness [29].

The stopper of each BC bottle is not sterile and must be disinfected before inoculation. A specific antiseptic can be used to disinfect the stopper, similar to that used for the skin (2% chlorhexidine in 70% isopropyl alcohol) or 70% isopropyl alcohol alone.

Blood volume

An adequate volume of blood is the most important parameter for the detection of microorganisms in the bloodstream of patients with suspected BSI, because the bacterial and fungal load in most BSIs is very low [8], [30], [31], [32], [33].

Recommendations for complete BC sampling suggest least two sets, corresponding to 30–40 mL in total [24], subdivided into four BC bottles, two for aerobic and two for anaerobic organisms; the aerobic bottle should be filled first. BC should take priority in the case of several specimens from the same venipuncture [26], [28], [34], [35], [36], [37], [38], [39], [40].

Recently, a retrospective study of 4000 BSI episodes demonstrated that without a third BC set, 7.9% of BSIs would have been missed, although in 33.9% of the missed episodes, the same organism recovered in the third BC was isolated in other clinical specimens (i.e. urine) for an actual rate of approximately 5% [39].

The practice of a “solitary BC” (only two bottles or one set), although still common, is not acceptable and should be actively discouraged [8], [28], [35].

BC bottles should be inoculated with 8–10 mL of blood (according to the manufacturer’s instructions). When BC bottles are underfilled (i.e. less than 5 mL of blood per bottle), false-negative results or delays in microbial growth may occur [8], [22]. When BC bottles are overfilled (>10 mL), they are increased risk of being flagged as false-positive mainly as a result of high production of background CO2 by the white blood cells [41], [42].

The correct filling of BC bottles should be monitored through visual inspection, either the patient’s bedside or on arrival the microbiology laboratory before BC incubation [8], [43]. Weighing the BC bottle when delivered to the laboratory is an alternative strategy [8]. Indeed, some BC system manufacturers have developed automated systems to estimate the level in the bottle the time of loading [44].

It has been reported that one aerobic bottle plus one anaerobic bottle yield more pathogens than two aerobic bottles, confirming that an anaerobic bottle should be included in each BC set [45].

An adequate volume of blood can be obtained either by increasing the number of venipunctures (“multi-sampling strategy”) or by collecting an adequate volume through one single venipuncture (“single-sampling strategy”), with comparable performance and similar sensitivity for a given blood volume inoculated [8]. The multi-sampling strategy is the standard approach recommended for decades, based on the execution of least two separate BC sets within a short period (generally 10–12 min apart). The single-sampling strategy, introduced more recently, is based on the total volume of blood collected from one single draw and inoculating the requested BC bottles (four to six in total) the same time [8], [46], [47]. Both approaches have advantages and limitations. In particular, the single-sampling strategy has important advantages: it allows a sufficient volume of blood to be collected from a single sample with simultaneous filling of least four bottles; reducing the contamination rate by limiting the number of blood draws; reducing the workload and therefore the risk of occupational exposure to pathogens; reducing the rate of solitary BCs; and enabling early initiation of empirical antibiotic treatment without waiting for subsequent BC sampling [8], [21], [23], [38], [46], [48], [49], [50], [51].

In a multi-sampling strategy, a positive result depends on the number of positive BC samples found when a culture yields a common contaminant such as coagulase-negative staphylococci. In this case, the result is clinically significant only if there are least two positive BCs [8]. With the single-sampling strategy, the rules for the interpretation of positive BC results are different, and the probability of having a clinically significant result increases with the number of positive bottles [8].

In general, the single-sampling strategy seems to be preferable in some types of patients, such as those in the ICU and emergency department. Conversely, the multi-sampling strategy is required to diagnose infective endocarditis, for which the number of positive samples on three separate venipunctures over 24 h is part of the modified Duke Criteria [52].

Sampling method and safety

Needlestick injuries represent a significant proportion of the work-related accidents recorded in hospitals; therefore, equipment and techniques for BC sampling must guarantee the operator’s safety [4], [5]. In accordance with international recommendations and the European Directive 2010/32/EU [6], devices must be adopted that guarantee the safety of the patient and the health operator: a sampling set with a butterfly needle equipped with a safety mechanism and an adapter for the collection of multiple blood specimens directly into the vials. The use of the same syringe to draw blood and then to inoculate the bottles must be avoided. The practice of capping sharp objects has been banned by the Directive 2010/32/EU. At the end of blood withdrawal, the safety mechanism should be activated and the sampling set disposed of in the appropriate container for sharp waste.

Medium to be used

In addition to the recommendation to always use both aerobic and anaerobic bottles, it remains optional to use a third bottle specifically for fungal detection and bottles with special truyền thông (i.e. enriched with substances that improve microbial recovery by absorbing antimicrobial agents present in the blood or that lyse the white blood cells releasing the microorganisms).

In patients with candidemia, the sensitivity for detecting Candida growth varies depending on the species, the system and the type of vials used [53]; sensitivity rates are lower in patients with neutropenia and those undergoing antifungal treatment [54]. The quantitative burden of Candida is very low in most cases; more than 50% of Candida BCs have ≤1 CFU/mL [33]. Similar to bacteria, a BC collection of four to six bottles is recommended, and, following these recommendations, a sensitivity of approximately 50%–75% has been reported to detect Candida in BCs.

Most clinical laboratories do not routinely use mycosis truyền thông for all BCs because most cases of candidemia can be successfully diagnosed using aerobic blood vials [55], [56], [57]; the exception is some Candida spp., such as C. glabrata, which is particularly prone to growing more frequently or more quickly in anaerobic vials [54], [56], [58], [59]. Therefore, for some Candida spp. and depending on the system and type of bottles used, mycosis bottles need to be included [54], [60]. Yeasts other than Candida in BCs have been increasingly reported as emerging and rare pathogens in up to 5% of patients with fungemia, and lysis/centrifugation methods are more suitable for detecting these rare yeast pathogens in BCs with higher efficacy [54].

Although BCs must be collected before starting antibiotic treatment, in some situations this is not possible, especially in those cases where symptoms of bacteremia persist due to inappropriate antimicrobial treatment [37].

The superior neutralizing capacity of resin-based truyền thông has been demonstrated, although different resins may affect the performance of neutralization [61], [62].

A valid alternative to the use of truyền thông containing resins is the dilution of blood in broth ratios greater than 1:5, which increases microbial recovery, probably by diluting antimicrobial agents and natural inhibitory factors in the blood to subinhibitory concentrations [63].

Time to BC transportation

The transport time of inoculated BC bottles to the laboratory and their incubation in continuous monitoring systems is a critical factor, and any delay beyond the maximum limit can postpone or hamper microbial growth [64], [65].

The inoculated BC bottles must be sent as soon as possible to the microbiology laboratory.

A time of 2 h between sample collection and incubation in a BC system can be considered optimal [24], [28]. The maximum acceptable limit is 4 h; beyond this time, a delay might negatively affect the positive BC rate and the time to prompt and effective antimicrobial therapy [64], [66], [67], [68], [69]. Although the optimal time to transportation should be <2 h, even a threshold of 4 h may be difficult to achieve in many situations [67], [70].

To follow these recommendations, health care facilities must implement adequate organization to make rapid delivery of BC bottles to a microbiology unit possible. Therefore, it is not acceptable to accumulate the BC samples inoculated throughout the day and send them together to the laboratory. Inoculated BC bottles, if not delivered to the laboratory immediately, must be stored room temperature, avoiding temperatures higher than 30 °C or refrigerated conditions [24].

In health care organizations where immediate transport of BCs to the laboratory for incubation in BC continuous monitoring systems cannot be guaranteed, and in those institutions where the microbiology service is not active 24 h per day, 7 days per week, the use of satellite BC instruments for incubation in specific settings, such as emergency departments and the ICU, has been suggested to allow significant improvements in terms of time and quality of the results [71]. However, the level of evidence remains limited, and further studies are needed to assess costs and benefits associated with such an organization.

Good practices for execution of BC are presented in Table 1.

Table 1:

Good practice for the execution of blood cultures.

– Perform hand hygiene – Collect all the necessary materials and place them on a clean tray (checking the expiration dates of all the items to be used) – Mark the optimal filling volume on the vials – Wear gloves – Apply the tourniquet – Perform antisepsis of the pre-selected site for sampling with 2% chlorhexidine in 70% isopropyl alcohol (disposable sterile applicator) for 30 s – Allow to dry for 30 s – Do not palpate the vein again (if the maneuver is necessary, wear sterile gloves) – Remove the stopper from the vial for blood culture and disinfect (2% chlorhexidine in 70% isopropyl alcohol) – Allow to dry for 30 s – Withdraw blood using a safety butterfly needle with an adapter for the collection of blood directly into the vials – A complete blood culture sampling comprises least 4–6 vials (2–3 sets) – Keep the vial upright under the patient’s arm – Fill every vial with approximately 10 mL of blood (adult patients), filling the aerobic vial first and then the anaerobic vial – Remove the tourniquet as soon as the blood begins to flow or within 2 min from application – Remove the vials gradually as they are filled and shake them gently – Activate the safety system of the needle used on removal from the vein – Dispose of the needle in the appropriate rigid container for sharp waste – Carry out hemostasis with a dry swab – Remove the gloves and perform hand hygiene – Mark all the necessary information on the vials (number of the sample, sampling site, time and date) – Indicate execution of blood culture sampling in the patient’s medical record – Send the vials to the laboratory immediately – If available, immediately place the vials into the satellite incubators

Quality assurance and quality management

Quality control of the pre-analytical phase should be monitored regularly by critical key performance indicators; several have been proposed and are in use [70]. The first step is to clearly communicate to the clinician and all the staff involved uniform and standardized guidelines for correct BC collection. Indicators allow different parts of the pre-analytical phase of BCs to be monitored. Monitoring the total volume of blood collected using systematic internal programs is a strong quality assurance requirement [8], [22], [24], [44], [70], [71], [72], [73]; the proportion of solitary BCs, which should be as low as possible (<10%), should be monitored.

False-positive and false-negative results are also essential indicators of analytical processes [8], [69], [70]. Moreover, the contamination rate should be assessed and should be less than 3% [21], [24], [74], [75], [76], [77], [78]. Although no definitive criteria are available, distinguishing contaminated BCs from those that are true-positive cultures is possible primarily by identifying the organism responsible for bacteremia and the number of positive BC samples or bottles with the same bacterial species. Moreover, clinical and laboratory information, the possible infection source, and assessment of the time to positivity may represent additional markers useful in clinical settings to discriminate between contamination and true-positive BCs [24], [74]. Contamination rates can be diminished by revised procedures and techniques, such as skin antisepsis, optimum sampling site and a single-sampling strategy [8], [24]. Monitoring the percentage of bottles collected via an indwelling intravascular access device instead of venipuncture BC collection and those obtained percutaneously is also important [77].

The time to transportation to the laboratory is another important key indicator. Because earlier detection is achieved if the transport time is minimized, it has been proposed that the proportion of BCs submitted with a delay should be monitored [76]. Although the critical limit that should not be exceeded has not yet been defined, it is advisable to have the shortest time delay possible [70].

A list of recommendations and comments on the correct procedures and techniques for BC collection are given in Table 2.

Table 2:

Recommendations for the correct procedures and techniques for collecting blood cultures.

Pre-analytical phaseRecommendations CommentsBC timing and preparation Collect BCs when BSI is suspected before administration of antibiotics There is no need to wait for temperature spikes or chills. Have BCs collected by a specialized or well-trained team Hand hygiene must be carefully performed with a hydroalcoholic preparation followed by wearing disposable gloves of the correct size Both hand hygiene and wearing gloves are necessary. It is not necessary to wear sterile gloves Peripheral venipuncture is the method of choice for BC collection. Alternatively, sampling by the arterial blood site could be considered, with similar performance Sampling from an arterial blood site performs better than from pre-existing intravenous catheters; the latter are associated with higher rates of contamination. Sampling via catheters is necessary for the diagnosis of central line-associated BSI Skin antisepsis Use 2% chlorhexidine in 70% isopropyl alcohol for 30 s; in allergic patients, use alcoholic povidone-iodine for 120 s Rates of contamination should be as low as possible (desirable ≤3%). The use of sterile disposable devices is recommended Blood volume The blood volume to be collected for each seta must be least 20–30 mL; minimum number of sets: 2; optimal number of sets: 3; minimum volume of blood, 30–40 mL, equal to 4 bottles (2 sets); optimal volume of blood: 40–60 mL, equal to 6 bottles (3 sets); volume per bottle: 8–10 mL Small total volume or underfilled bottles may be associated with false-negative results or delays in microbial growth; overfilled bottles could have a negative impact on the diagnostic yield of BC, with false-positive results (due to high leukocyte counts) or false-negative results (caused by blood clots); “solitary” BCs (only 2 bottles or 1 set) may negatively affect the sensitivity of BC and are not acceptable Sampling method and safety Use of a butterfly needle equipped with a safety mechanism and an adapter for the collection of multiple blood specimens directly into the vials It is acceptable to use either a vacutainer or needle and syringe; the double-needle technique is not recommended Single-sampling strategies (SSS) and multi-sampling strategies are used. SSS is preferred SSS can help reduce the risk of contamination and has the advantage of requiring only one venipuncture BC truyền thông The use of both aerobic and anaerobic bottles with resin-based truyền thông is preferred when antibiotic administration has started before the collection of BCs Most cases of candidemia can be successfully diagnosed using aerobic blood vials; C. glabrata grows better in anaerobic bottles In some circumstances, mycosis bottles need to be included For some Candida spp. and depending on the system and type of bottles used, mycosis vials are needed Time to BC transportation Optimal transport time to incubation: 2 h; store BC samples room temperature before incubation The critical maximum time limit has not yet been defined, but it should be as short as possible; a delay might negatively affect the diagnostic yield of BC; use satellite BC instruments for incubation in some situations Indicators for quality assurance and quality management Total volume of blood cultured: the volume of blood per bottle and the number of bottles Assess the proportion of solitary BCs, the number of false-positive and false-negative results, and check the bottle weight and/or the fluid level in the bottles manually or assisted by instruments Contamination rate As contamination has a negative impact on BC specificity, it should be as low as possible (≤3%); check procedures, such as skin antisepsis, sampling site and sampling strategy Time to transportation Monitoring the proportion of BCs submitted with a delay (optimal time: ≤2 h; maximum: ≤4 h)

Discussion and conclusions

To ensure rapid and accurate BC results, it is mandatory to adequately select, collect and transport the specimens, a process that includes several steps from sample withdrawal to incubation [8], [24], [48], [69], [78], [79], [80].

The process involves various health personnel, who must operate in agreement with good clinical practice within a multidisciplinary team. In addition to the doctors and nurses engaged in the diagnostic process, the hospital pharmacist with infectious disease training plays an important role, because he/she is responsible for the procurement, proper preservation and, together with the other personnel involved, the choice of pharmaceutical products required for correct BC practice, which undeniably have an impact on the validity of the test [69], [81], [82], [83], [84], [85].

Despite the existence of some national and international reviews on the correct procedures and techniques for the pre-analytical phase, adopting the current recommendations is a critical issue in many cases [8], [24], [28], [70]. In many hospital wards, the execution of BCs is insufficient in numerical terms and often incorrect, especially within emergency departments where limited time and the large number of patients requiring critical care often result in incorrect procedures [74]. Although most cases of BSI come from the community, making the involvement of emergency departments essential, shortcomings of a cultural (often there is a delay in transferring the patient to the department after initiating empirical antibiotic treatment) and organizational nature (lack of microbiology laboratories open 24 h a day or lack of satellite incubators that enable sampling to be performed any time) make the execution of BC tests suboptimal.

Hence, organizational and cultural operative interventions must be planned and implemented in clinical practice. In particular, with regard to cultural and educational aspects, certain potentially effective actions are advisable:

Dissemination of protocols and their application: for the first time, this document brings together the operative procedures that constitute the BC test;

Interventions on communication and training of medical and nursing personnel (drawing up and disseminating authoritative documents, courses, but also practical training the patient’s bedside, bringing together all the various professional figures involved: doctor, nurses, microbiologist and others);

The formation, within the hospital, of a BC team comprising nurses, clinical microbiologists and infectious disease experts, who have expertise in sampling and, as a second step, the establishment and review of the treatments involving other professional figures (intensive care experts, clinicians, hospital pharmacists, etc.).

To translate these actions into practice, it is vital to increase awareness among Health Management and Scientific Societies that have the task of organizing training courses and educational initiatives, as well as providing the theoretical and organizational framework required for optimal clinical practice [86]. The medico-legal and health cost aspects associated with the accuracy and reliability of BC tests should also be underlined. The incorrect execution of a BC can, for example, lead to legal disputes and claims for compensation. Moreover, a false-positive result, with the consequent increase in antibiotic treatments and hospital stays, can translate into higher health costs, but also in a pointless and damaging selective pressure on which antimicrobial resistance emergencies are based. Finally, extending awareness of the problem of BSI is to be hoped for beyond the health care field, among institutions, the truyền thông and the general population. It is known that 80% of septic events arise in communities [87]; increasing awareness and educating people to recognize the initial symptoms will reduce fatal outcomes due to late interventions.

BSI is a global concern that needs to be adequately considered and tackled with a multidisciplinary approach. Although other recommendations have been released for the correct management of the pre-analytical phase, including venous blood sampling and sample transportation, BC specimens require more detailed and specific guidelines [88], [89], [90].

To guarantee the clinical effectiveness of BC and the best possible patient outcome, it is paramount that the involvement of the various professionals is based on constant communication and strict adherence to shared procedures. These aspects of communication and adherence to univocal protocols are currently the main issues that must be addressed to optimize the clinical impact of the diagnostic and therapeutic procedures. Only in this way will it be possible to reduce the rate of morbidity and mortality that BSIs still cause worldwide.

Acknowledgments

Editorial assistance was provided by Edra S.p.A. V.P.’s work is supported by the Italian Ministry of Health, Ricerca Corrente, Linea 1 Progetto 3.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by an unconditional contribution from Becton Dickinson.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Laupland KB, Gregson DB, Zygun DA, Doig CJ, Mortis G, Church DL. Severe bloodstream infections: a population-based assessment. Crit Care Med 2004;32:992–7.10.1097/01.CCM.0000119424.31648.1ESearch in Google Scholar PubMed

2. Bearman GM, Wenzel RP. Bacteremias: a leading cause of death. Arch Med Res 2005;36:646–59.10.1016/j.arcmed.2005.02.005Search in Google Scholar PubMed

3. Pliakos EE, Andreatos N, Shehadeh F, Ziakas PD, Mylonakis E. The cost-effectiveness of rapid diagnostic testing for the diagnosis of bloodstream infections with or without antimicrobial stewardship. Clin Microbiol Rev 2022;31:e00095–17.10.1128/CMR.00095-17Search in Google Scholar PubMed PubMed Central

4. Di Bari V, De Carli G, Puro V, Gruppo Collaborativo dello Studio Italiano sul Rischio Occupazionale da HIV e Altri Patogeni a Trasmissione Ematica (SIROH). [Prevention of accidental needle sticks before the Directive 2010/32/EU in a sample of Italian hospitals]. Med Lav 2015;106:186–205.Search in Google Scholar

5. Green-McKenzie J, McCarthy RB, Shofer FS. Characterisation of occupational blood and body toàn thân fluid exposures beyond the Needlestick Safety and Prevention Act. J Infect Prev 2022;17:226–32.10.1177/1757177416645339Search in Google Scholar PubMed PubMed Central

6. Council Directive 2010/32/EU of 10 May 2010 implementing the Framework Agreement on prevention from sharp injuries in the hospital and healthcare sector concluded by HOSPEEM and EPSU. Official Journal of the European Union 2010;134:66–72.Search in Google Scholar

7. Riedel S, Bourbeau P, Swartz B, Brecher S, Carroll KC, Stamper PD, et al. Timing of specimen collection for blood cultures from febrile patients with bacteremia. J Clin Microbiol 2008;46:1381–5.10.1128/JCM.02033-07Search in Google Scholar PubMed PubMed Central

8. Lamy B, Dargère S, Arendrup MC, Parienti J-J, Tattevin P. How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. Front Microbiol 2022;7:697.10.3389/fmicb.2022.00697Search in Google Scholar PubMed PubMed Central

9. Foggiato GF, Tuon FF, Becker G, Dos Santos AH, Pereira BR, de Souza GL, et al. Reduction of blood culture contamination rates after implementation of a phlebotomist team. Am J Infect Control 2022;45:698–9.10.1016/j.ajic.2022.02.028Search in Google Scholar PubMed

10. Gander RM, Byrd L, Decrescenzo M, Hirany S, Bowen M, Baugman J. Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department. J Clin Microbiol 2009;47:1021–4.10.1128/JCM.02162-08Search in Google Scholar PubMed PubMed Central

11. Weinbaum FI, Lavie S, Danek M, Sixsmith D, Heinrich GF, Mills SS. Doing it right the first time: quality improvement and the contaminant blood culture. J Clin Microbiol 1997;35:563–5.10.1128/jcm.35.3.563-565.1997Search in Google Scholar PubMed PubMed Central

12. Washer LL, Chenoweth C, Kim H-W, Rogers MA, Malani AN, Riddell J, et al. Blood culture contamination: a randomized trial evaluating the comparative effectiveness of 3 skin antiseptic interventions. Infect Control Hosp Epidemiol 2013;34:15–21.10.1086/668777Search in Google Scholar PubMed

13. National Health System, Department of Health. Taking blood cultures, a summary of best practice. Available : ://webarchive.nationalarchives.gov.uk/20120118171812/://hcai.dh.gov.uk/files/2011/03/Document_Blood_culture_FINAL_100826.pdf. Accessed: 20 Jan 2022.Search in Google Scholar

14. Al-Hamad A, Al-Ibrahim M, Alhajhouj E, Al-Alshaikh Jaffer W, Altowaileb J, Alfaraj H. Nurses’ competency in drawing blood cultures and educational intervention to reduce the contamination rate. J Infect Public Health 2022;9:66–74.10.1016/j.jiph.2015.06.007Search in Google Scholar PubMed

15. Rupp ME, Cavalieri RJ, Marolf C, Lyden E. Reduction in blood culture contamination through use of initial specimen diversion device. Clin Microbiol Infect 2022;61:201–5.10.1093/cid/cix304Search in Google Scholar PubMed PubMed Central

16. Kim NH, Kim M, Lee S, Yun NR, Kim KH, Park SW, et al. Effect of routine sterile gloving on contamination rates in blood culture: a cluster randomized trial. Ann Intern Med 2011;154:145–51.10.7326/0003-4819-154-3-201102010-00003Search in Google Scholar PubMed

17. Bentley J, Thakore S, Muir L, Baird A, Lee J. A change of culture: reducing blood culture contamination rates in an Emergency Department. Br Med J Qual Improv Rep 2022;5:u206760.w2754.10.1136/bmjquality.u206760.w2754Search in Google Scholar PubMed PubMed Central

18. Stohl S, Benenson S, Sviri S, Avidan A, Block C, Sprung CL, et al. Blood cultures central line insertion in the intensive care unit: comparison with peripheral venipuncture. J Clin Microbiol 2011;49:2398–403.10.1128/JCM.02546-10Search in Google Scholar PubMed PubMed Central

19. Levin PD, Moss J, Stohl S, Fried E, Cohen MJ, Sprung CL, et al. Use of the nonwire central line hub to reduce blood culture contamination. Chest 2013;143:640–5.10.1378/chest.12-0863Search in Google Scholar PubMed

20. Dawson S. Blood culture contaminants. J Hosp Infect 2014;87: 1–10.10.1016/j.jhin.2014.02.009Search in Google Scholar PubMed

21. Garcia RA, Spitzer ED, Beaudry J, Beck C, Diblasi R, Gilleeny-Blabac M, et al. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line-associated bloodstream infections. Am J Infect Control 2015;43:1222–37.10.1016/j.ajic.2015.06.030Search in Google Scholar PubMed

22. Mermel LA, Maki DG. Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med 1993;119:270–2.10.7326/0003-4819-119-4-199308150-00003Search in Google Scholar PubMed

23. Vitrat-Hincky V, Francois P, Labarere J, Recule C, Stahl JP, Pavese P. Appropriateness of blood culture testing parameters in routine practice. Results from a cross-sectional study. Eur J Clin Microbiol Infect Dis 2011;30:533–9.10.1007/s10096-010-1115-8Search in Google Scholar PubMed

24. Willems E, Smismans A, Cartuyvels R, Coppens G, Van Vaerenbergh K, Van den Abeele A-M, et al. The preanalytical optimization of blood cultures: a review and the clinical importance of benchmarking in 5 Belgian hospitals. Diagn Microbiol Infect Dis 2012;73:1–8.10.1016/j.diagmicrobio.2012.01.009Search in Google Scholar PubMed

25. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009;49:1–45.10.1086/599376Search in Google Scholar PubMed PubMed Central

26. Wilson ML, Mitchell M, Morris AJ, Murray PR, Reimer RG, Reller LB, et al. Principles and procedures for blood cultures; approved guidelines, CLSI document M47-A, 27. Wayne, PA: Clinical and Laboratory Standard Institute; 2007.Search in Google Scholar

27. Gruppo di Lavoro Infezioni nel Paziente Critico. Infezioni nel torrente circolatorio 2014. Available : ://www.amcli.it/wpcontent/uploads/2015/09/PDinfezionieltorrentecircolatorioFONTANA2014.pdf. Accessed: 20 Jan 2022.Search in Google Scholar

28. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis 2013;57:e22–121.10.1093/cid/cit278Search in Google Scholar PubMed PubMed Central

29. Madeo M, Barlow G. Reducing blood-culture contamination rates by the use of a 2% chlorhexidine solution applicator in acute admission units. J Hosp Infect 2008;69:307–9.10.1016/j.jhin.2008.03.009Search in Google Scholar PubMed

30. Arpi M, Bentzon MW, Jensen J, Frederiksen W. Importance of blood volume cultured in the detection of bacteremia. Eur J Clin Microbiol Infect 1989;8:838–42.10.1007/BF02185857Search in Google Scholar PubMed

31. Jonsson B, Nyberg A, Henning C. Theoretical aspects of detection of bacteraemia as a function of the volume of blood cultured. APMIS 1993;101:595–601.10.1111/j.1699-0463.1993.tb00152.xSearch in Google Scholar PubMed

32. Opota O, Croxatto A, Prod’hom G, Greub G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 2015;21:313–22.10.1016/j.cmi.2015.01.003Search in Google Scholar PubMed

33. Pfeiffer CD, Samsa GP, Schell WA, Reller LB, Perfect JR, Alexander BD. Quantitation of Candida CFU in initial positive blood cultures. J Clin Microbiol 2011;49:2879–83.10.1128/JCM.00609-11Search in Google Scholar PubMed PubMed Central

34. Riedel S, Carroll KC. Blood cultures: key elements for best practices and future directions. J Infect Chemother 2010;16:301–16.10.1007/s10156-010-0069-1Search in Google Scholar PubMed

35. Lamy B, Seifert H. Microbial diagnosis: septicemia. In: Cornaglia G, Courcol R, Herrmann JL, Kahlmeter G, Peigue-Lafeuille H, Vila J, editors. European Manual of Clinical Microbiology (SFM/ESCMID), 1st ed. Paris: SFM; 2012:101–10.Search in Google Scholar

36. Public Health England. UK Standards for Microbiology Investigations B 37: Investigation of blood cultures (for organisms other than Mycobacterium species). 2014. Available : https://www.gov.uk/government/collections/standards-for-microbiology-investigations-smi. Accessed: 20 Jan 2022.Search in Google Scholar

37. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2022. Intensive Care Med 2022;43:304–77.10.1007/s00134-017-4683-6Search in Google Scholar PubMed

38. Patel R, Vetter EA, Harmsen WS, Schleck CD, Fadel HJ, Cockerill 3rd FR. Optimized pathogen detection with 30- compared to 20-milliliter blood culture draws. J Clin Microbiol 2011;49:4047–51.10.1128/JCM.01314-11Search in Google Scholar

39. Collazos-Blanco A, Pérez-García F, Sánchez-Carrillo C, de Egea V, Muñoz P, Bouza E. Estimation of missed bloodstream infections without the third blood culture set: a retrospective observational single-centre study. Clin Microbiol Infect 2022;25:469–73.10.1016/j.cmi.2022.06.024Search in Google Scholar

40. Bartlett JG, Dick J. The controversy regarding routine anaerobic blood cultures. Am J Med 2000;108:505–6.10.1016/S0002-9343(00)00321-1Search in Google Scholar

41. Wilson ML, Weinstein MP, Reller LB. Automated blood culture systems. Clin Lab Med 1994;14:149–69.10.1016/S0272-2712(18)30401-3Search in Google Scholar

42. Reimer LG, Wilson ML, Weinstein MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev 1997;103:444–65.10.1128/CMR.10.3.444Search in Google Scholar PubMed PubMed Central

43. van Ingen J, Hilt N, Bosboom R. Education of phlebotomy teams improves blood volume in blood culture bottles. J Clin Microbiol 2013;51:1020–1.10.1128/JCM.03068-12Search in Google Scholar PubMed PubMed Central

44. Chang J, Park JS, Park S, Choi B, Yoon NS, Sung H, et al. Impact of monitoring blood volume in the BD BACTEC™ FX blood culture system: virtual volume versus actual volume. Diagn Microbiol Infect Dis 2015;81:89–93.10.1016/j.diagmicrobio.2014.11.001Search in Google Scholar PubMed

45. Grohs P, Mainardi J-L, Podglajen I, Hanras X, Eckert C, Buu-Hoï A, et al. Relevance of routine use of the anaerobic blood culture bottle. J Clin Microbiol 2007;45:2711–5.10.1128/JCM.00059-07Search in Google Scholar PubMed PubMed Central

46. Li J, Plorde JJ, Carlson LG. Effects of volume and periodicity on blood cultures. J Clin Microbiol 1994;32:2829–31.10.1128/jcm.32.11.2829-2831.1994Search in Google Scholar PubMed PubMed Central

47. Kirn TJ, Weinstein MP. Update on blood cultures: how to obtain, process, report, and interpret. Clin Microbiol Infect 2013;19:513–20.10.1111/1469-0691.12180Search in Google Scholar PubMed

48. Bates DW, Goldman L, Lee TH. Contaminant blood cultures and resource utilization. The true consequences of false-positive results. J Am Med Assoc 1991;265:365–9.10.1001/jama.265.3.365Search in Google Scholar

49. Lamy B, Roy P, Carret G, Flandrois JP, Delignette-Muller ML. What is the relevance of obtaining multiple blood samples for culture? A comprehensive model to optimize the strategy for diagnosing bacteremia. Clin Infect Dis 2002;35:842–50.10.1086/342383Search in Google Scholar PubMed

50. Arendrup M, Jensen IP, Justesen T. Diagnosing bacteremia a Danish hospital using one early large blood volume for culture. Scand J Infect Dis 1996;28:609–14.10.3109/00365549609037969Search in Google Scholar PubMed

51. Dargère S, Parienti JJ, Roupie E, Gancel PE, Wiel E, Smaiti N, et al. Unique blood culture for diagnosis of bloodstream infections in emergency departments: a prospective multicenter study. Clin Microbiol Infect 2014;20:O920–7.10.1111/1469-0691.12656Search in Google Scholar PubMed

52. Li JS, Sexton DJ, Mick N, Nettles R, Fowler Jr VG, Ryan T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000;30:633–8.10.1086/313753Search in Google Scholar PubMed

53. Horvath LL, George BJ, Murray CK, Harrison LS, Hospenthal DR. Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for candida growth detection. J Clin Microbiol 2004;42:115–8.10.1128/JCM.42.1.115-118.2004Search in Google Scholar PubMed PubMed Central

54. Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect 2012;18(Suppl 7):9–18.10.1111/1469-0691.12038Search in Google Scholar PubMed

55. George BJ, Horvath LL, Hospenthal DR. Effect of inoculum size on detection of Candida growth by the BACTEC 9240 automated blood culture system using aerobic and anaerobic truyền thông. J Clin Microbiol 2005;43:433–5.10.1128/JCM.43.1.433-435.2005Search in Google Scholar PubMed PubMed Central

56. Köck R, Eissing LC, Boschin MG, Ellger B, Horn D, Idelevich EA, et al. Evaluation of Bactec mycosis IC/F and Plus aerobic/F blood culture bottles for detection of Candida in the presence of antifungal agents. J Clin Microbiol 2013;51:3683–7.10.1128/JCM.02048-13Search in Google Scholar PubMed PubMed Central

57. Altun O, Almuhayawi M, Lüthje P, Taha R, Ullberg M, Özenci V. Controlled evaluation of the new BacT/Alert Virtuo blood culture system for detection and time to detection of bacteria and yeasts. J Clin Microbiol 2022;54:1148–51.10.1128/JCM.03362-15Search in Google Scholar PubMed PubMed Central

58. Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR. Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol 2012;61:701–4.10.1099/jmm.0.038166-0Search in Google Scholar PubMed

59. Cobos-Trigueros N, Kaasch AJ, Soriano A, Torres JL, Vergara A, Morata L, et al. Time to positivity and detection of growth in anaerobic blood culture vials predict the presence of Candida glabrata in candidemia: a two-center European cohort study. J Clin Microbiol 2014;52:3082–4.10.1128/JCM.01198-14Search in Google Scholar PubMed PubMed Central

60. Gokbolat E, Oz Y, Metintas S. Evaluation of three different bottles in BACTEC 9240 automated blood culture system and direct identification of Candida species to shorten the turnaround time of blood culture. J Med Microbiol 2022;66:470–6.10.1099/jmm.0.000434Search in Google Scholar PubMed

61. Flayhart D, Borek AP, Wakefield T, Dick J, Carroll KC. Comparison of BACTEC PLUS blood culture truyền thông to BacT/Alert FA blood culture truyền thông for detection of bacterial pathogens in samples containing therapeutic levels of antibiotics. J Clin Microbiol 2007;45:816–21.10.1128/JCM.02064-06Search in Google Scholar PubMed PubMed Central

62. Mitteregger D, Barousch W, Nehr M, Kundi M, Zeitlinger M, Makristathis A, et al. Neutralization of antimicrobial substances in new BacT/Alert FA and FN Plus blood culture bottles. J Clin Microbiol 2013;51:1534–40.10.1128/JCM.00103-13Search in Google Scholar PubMed PubMed Central

63. Reimer LG, Wilson ML, Weinstein MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev 1997;103:444–65.10.1128/CMR.10.3.444Search in Google Scholar PubMed PubMed Central

64. Rönnberg C, Mildh M, Ullberg M, Özenci V. Transport time for blood culture bottles: underlying factors and its consequences. Diagn Microbiol Infect Dis 2013;76:286–90.10.1016/j.diagmicrobio.2013.03.031Search in Google Scholar PubMed

65. Van den Poel B, Klak A, Desmet S, Verhaegen J. How small modifications in laboratory workflow of blood cultures can have a significant impact on time to results. Eur J Clin Microbiol Infect Dis 2022;37:1753–60.10.1007/s10096-018-3309-4Search in Google Scholar PubMed

66. Seegmüller I, Eschenbach U, Kamereck K, Miethke T. Sensitivity of the BacT/ALERT FA-medium for detection of Pseudomonas aeruginosa in pre-incubated blood cultures and its temperature-dependence. J Med Microbiol 2004;53:869–74.10.1099/jmm.0.45533-0Search in Google Scholar PubMed

67. Morton B, Nagaraja S, Collins A, Pennington SH, Blakey JD. A retrospective evaluation of critical care blood culture yield-do support services contribute to the “weekend effect”? PLoS One 2015;10:e0141361.10.1371/journal.pone.0141361Search in Google Scholar PubMed PubMed Central

68. Kerremans JJ, van der Bij AK, Goessens W, Verbrugh HA, Vos MC. Immediate incubation of blood cultures outside routine laboratory hours of operation accelerates antibiotic switching. J Clin Microbiol 2009;47:3520–3.10.1128/JCM.01092-09Search in Google Scholar PubMed PubMed Central

69. Venturelli C, Righi E, Borsari L, Aggazzotti G, Busani S, Mussini C, et al. Impact of pre-analytical time on the recovery of pathogens from blood cultures: results from a large retrospective survey. PLoS One 2022;12:e0169466.10.1371/journal.pone.0169466Search in Google Scholar PubMed PubMed Central

70. Lamy B, Ferroni A, Henning C, Cattoen C, Laudat P. How to: accreditation of blood cultures’ proceedings. A clinical microbiology approach for adding value to patient care. Clin Microbiol Infect 2022;24:956–63.10.1016/j.cmi.2022.01.011Search in Google Scholar PubMed

71. Rocchetti A, Rapallo F, Bottino P, Mastrazzo A. Implementation of satellite blood-culture system in an emergency department: impact of time-to results in sepsis detection. Microbiol Med 2022;31:5859.10.4081/mm.2022.5859Search in Google Scholar

72. Schifman RB, Bachner P, Howanitz PJ. Blood culture quality improvement: a college of American Pathologists Q.-probes study involving 909 institutions and 289572 blood culture sets. Arch Pathol Lab Med 1996;120:999–1002.Search in Google Scholar

73. Novis DA, Dale JC, Schifman RB, Ruby SG, Walsh MK. Solitary blood cultures: a College of American Pathologists Q.-probes study of 132,778 blood culture sets in 333 small hospitals. Arch Pathol Lab Med 2001;125:1290–4.10.5858/2001-125-1290-SBCSearch in Google Scholar PubMed

74. Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev 2006;19:788–802.10.1128/CMR.00062-05Search in Google Scholar PubMed PubMed Central

75. Baron EJ, Weinstein MP, Dunne WM, Yagupsky P, Welch DF, Wilson DM. Blood cultures IV. Cumitech cumulative techniques and procedures in clinical microbiology 1C. Washington DC: ASM Press, 2005:1–16, 23–5.Search in Google Scholar

76. Clinical Laboratory Standards Institute (CLSI). Principles and procedures for blood cultures. CLSI document M47-A. Wayne, PA: CLSI, 2007:1–53.Search in Google Scholar

77. Isenberg HD. Clinical microbiology procedures handbook. In: York MK, Henry M, Gilligan P, editors. Section 3.4.1 Aerobic bacteriology, blood cultures, general detection and interpretation. Washington, DC: American Society of Microbiology Press, 2010.Search in Google Scholar

78. Siméon S, Moing VL, Tubiana S, Duval X, Fournier D, Lavigne J-P, et al. Time to blood culture positivity: an independent predictor of infective endocarditis and mortality in patients with Staphylococcus aureus bacteraemia. Clin Microbiol Infect 2022;25:481–8.10.1016/j.cmi.2022.07.015Search in Google Scholar PubMed

79. M47A: Principles and procedures for blood cultures. Clinical & Laboratory Standards Institute. Available : https://clsi.org/standards/products/microbiology/documents/m47/. Accessed: 3 Sep 2022.Search in Google Scholar

80. Buchler T, Pavlik T, Melichar B, Bortlicek Z, Usiakova Z, Dusek L, et al. Bevacizumab with 5-fluorouracil, leucovorin, and oxaliplatin versus bevacizumab with capecitabine and oxaliplatin for metastatic colorectal carcinoma: results of a large registry-based cohort analysis. BMC Cancer 2014;14:323.10.1186/1471-2407-14-323Search in Google Scholar PubMed PubMed Central

81. Nucera G, Esposito A, Tagliani N, Baticos CJ, Marino P. Physicians’ and nurses’ knowledge and attitudes in management of sepsis: an Italian study. J Health Soc Sci 2022;3:13–26.Search in Google Scholar

82. Arena F, Argentieri M, Bernaschi P, Fortina G, Kroumova V, Manso E, et al. Real life turnaround time of blood cultures in the clinical microbiology laboratory: results of the first Italian survey, May 2015. Microbiol Med 2022;31:6127.10.4081/mm.2022.6127Search in Google Scholar

83. Edmiston CE, Garcia R, Barnden M, DeBaun B, Johnson HB. Rapid diagnostics for bloodstream infections: a primer for infection preventionists. Am J Infect Control 2022;46:1060–8.10.1016/j.ajic.2022.02.022Search in Google Scholar PubMed

84. Rello J, van Engelen TS, Alp E, Calandra T, Cattoir V, Kern WV, et al. Towards precision medicine in sepsis: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect 2022;24:1264–72.10.1016/j.cmi.2022.03.011Search in Google Scholar PubMed

85. Garcia RA, Spitzer ED, Kranz B, Barnes S. A national survey of interventions and practices in the prevention of blood culture contamination and associated adverse health care events. Am J Infect Control 2022;46:571–6.10.1016/j.ajic.2022.11.009Search in Google Scholar PubMed

86. Dargère S, Cormier H, Verdon R. Contaminants in blood cultures: importance, implications, interpretation and prevention. Clin Microbiol Infect 2022;24:964–9.10.1016/j.cmi.2022.03.030Search in Google Scholar PubMed

87. CDC. Think sepsis. Time matters. Centers for Disease Control and Prevention 2022. Available : https://www.cdc.gov/vitalsigns/sepsis/index.html. Accessed: 28 May 2022.Search in Google Scholar

88. Lippi G, Chance JJ, Church S, Dazzi P, Fontana R, Giavarina D, et al. Preanalytical quality improvement: from dream to reality. Clin Chem Lab Med 2011;49:1113–26.10.1515/CCLM.2011.600Search in Google Scholar PubMed

89. Simundic AM, Bölenius K, Cadamuro J, Church S, Cornes MP, van Dongen-Lases EC, et al. Working Group for Preanalytical Phase (WG-PRE) of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and Latin American Working Group for Preanalytical Phase (WG-PRE-LATAM) of the Latin America Confederation of Clinical Biochemistry (COLABIOCLI). Joint EFLM-COLABIOCLI recommendation for venous blood sampling. Clin Chem Lab Med 2022;56:2015–38.10.1515/cclm-2022-0602Search in Google Scholar PubMed

90. Zaninotto M, Tasinato A, Vecchiato G, Legnaro A, Pinato A, Plebani M. Performance specifications in extra-analytical phase of laboratory testing: sample handling and transportation. Clin Biochem 2022;50:574–8.10.1016/j.clinbiochem.2022.04.008Search in Google Scholar PubMed

Which specimen requires especially strict identification?

Special Collections and Point-of-care testing.

Which of the following tests may require special chain of custody documentation when the specimen is collected?

Special Procedures.

Which of the following tests is collected from patients with Fuo to rule out septicemia?

questions for chapter test 11 & 12.

What is the most critical aspect of blood specimen collection?

Cleaning the venipuncture site is the most important part of the blood collection procedure. Tải thêm tài liệu liên quan đến nội dung bài viết Which test requires strict skin antisepsis procedures before specimen collection

Clip Which test requires strict skin antisepsis procedures before specimen collection ?

Bạn vừa tham khảo Post Với Một số hướng dẫn một cách rõ ràng hơn về Review Which test requires strict skin antisepsis procedures before specimen collection tiên tiến nhất

Chia Sẻ Link Cập nhật Which test requires strict skin antisepsis procedures before specimen collection miễn phí

Hero đang tìm một số trong những Chia Sẻ Link Cập nhật Which test requires strict skin antisepsis procedures before specimen collection miễn phí.

Thảo Luận thắc mắc về Which test requires strict skin antisepsis procedures before specimen collection

Nếu sau khi đọc nội dung bài viết Which test requires strict skin antisepsis procedures before specimen collection vẫn chưa hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Mình lý giải và hướng dẫn lại nha #test #requires #strict #skin #antisepsis #procedures #specimen #collection - 2022-12-02 09:55:10 Which test requires strict skin antisepsis procedures before specimen collection

Post a Comment